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Paratuberculosis and Type I diabetes
Is this the trigger?
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Summary Type 1 diabetes mellitus (T1DM) is an autoimmune disease. The etiology of T1DM is incompletely
understood but environmental agent(s) are thought to trigger T1DM in the genetically at risk. Exposure to cow’s milk
early in life is a recognized risk factor in the development of T1DM. Mycobacterium avium ss. paratuberculosis (MAP) is
the cause of bovine Johne’s disease and also is thought to act as an immune antigen in Crohn’s disease and other
granulomatous diseases. MAP is shed in cow’s milk and has been shown to survive pasteurization. Genetic
susceptibilities, epitope homologies and epidemiologic studies are presented that support MAP as a causative agent of
T1DM in the genetically at risk.

�c 2006 Elsevier Ltd. All rights reserved.
Introduction

The cause of Type 1 diabetes (TIDM) is unsolved. It
thought to be caused by a combination of genetic
and environmental factors. It is an autoimmune
disease in which T lymphocytes infiltrate the islets
of the pancreas and destroy the insulin-producing
beta cell population [1]. This paper postulates a
causative role for Mycobacterium avium ss. paratu-
berculosis (MAP), acting as an environmental agent
that triggers T1DM in the genetically susceptible
individual. Three links are offered to support this
postulate:
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(1) shared genetic susceptibility to both myco-
bacterial infection and autoimmune diseases,
including T1DM;

(2) epitope homologies between mycobacterial
elements and pancreatic glutamic acid decar-
boxylase (GAD);

(3) an alternative interpretation of the epidemi-
ologic findings that launched a large study
the Trial to Reduce Type 1 Diabetes in the
Genetically at Risk (TRIGR).
MAP

Mycobacterium avium ss. paratuberculosis (MAP)
is an obligate intracellular organism that causes
a transmural enteric granulomatous disease in
ved.
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ruminant animals, Johne’s disease [2,3]. MAP is
also a suspected to have a causative role in Crohn’s
disease, an enteric granulomatous disease of hu-
mans [4–8]. Traditional methods of detecting bac-
teria, culture and stain, have largely been
ineffective in detecting MAP in humans. The bacte-
ria are very difficult to culture and MAP is able to
exist in a spheroplast (cell wall-deficient) form in
humans [9–11]. The advent of bacterial DNA detec-
tion with polymerase chain reaction (PCR) has
greatly aided the detection of mycobacteria [12–
14] and the DNA of MAP has been found in greater
than 90% of biopsy specimens from individuals with
Crohn’s disease [15]. Employing newer culture
methods Naser reported the detection of MAP bac-
teremia in a substantial number of patients with
Crohn’s disease. MAP has been found to survive
pasteurization in retail milk [16] and cheese [17].
Additionally, MAP has been found in granulomas
of sarcoidosis [18].
Shared genetic susceptibilities

Analysis of multiple populations shows that TIDM is
increasing at an incidence of 3% per year since 1960
[19]. Historically, genetic association with TIDM
has been established for three chromosomal re-
gions: HLA DQ/DR (IDDM1), INS VNTR (IDDM2) [20]
and CTLA-4 (cytotoxic lymphocyte antigen-4) [21].

More recently, susceptibility genes for T1DM
have been identified to include the NRAMP-natural
resistance-associated macrophage protein gene
(also known as SLC11A1) [22,23] as well as the
VDR gene (vitamin D receptor) [24,25].

NRAMP

NRAMP (natural resistance-associated macrophage
protein) is a gene that encodes a divalent cation
transporter in phagosomes of macrophages [26].
NRAMP modulates the cellular environment in re-
sponse to activation by intracellular pathogens by
acidifying the phagosome [27]. As such, it plays a
role in host innate immunity [28]. Mutation of
NRAMP impairs phagosome acidification yielding a
permissive environment for the persistence of
intracellular bacteria [29].
VDR

In addition to a role in the regulation of bone and
mineral metabolism, Vitamin D is a potent modula-
tor of the immune system [30]. Vitamin D activity
occurs via the vitamin D receptor (VDR). VDR is part
of the steroid receptor super-family and is widely
express in many cell types including lymphocytes,
macrophages and the insulin producing pancreatic
beta-cells [25]. Vitamin D and its receptor, VDR,
have been implicated in the genetic pathogenesis
of TIDM: VDR gene polymorphisms have been de-
scribed in TIDM in Taiwanese [31], Indian Asians
[32], Germans [33], Spaniards [34], Japanese [35]
and Croatians [36]. Additionally, calcitriol – the
hormonal form of vitamin D – prevents or markedly
suppress experimental TIDM [37]. In addition to
T1DM, NRAMP and VDR polymorphisms also confer
susceptibility to other autoimmune diseases
[25,37], and to infection – most notably, mycobac-
terial infection [25,38,39].
Molecular mimicry

It has been proposed that epitope homology be-
tween infectious agents and host proteins give rise
to molecular mimicry that can induce autoimmune
disease [40]. Specific to T1DM is that postulate that
cross-reactive microbial antigens in a genetically
susceptible host is the critical event leading to
the autoimmune destruction of insulin-producing
beta-cells of the pancreas [41]. Heat shock pro-
teins are a highly conserved group of chaperone
proteins expressed in cells exposed to elevated
temperatures or other forms of environmental
stress. Hsp65 is a heat shock protein that is unique
to mycobacteria [42]. There is an important role
for heat shock proteins in autoimmunity and infec-
tion; glutamic acid decarboxylase (GAD), the prime
antigen of Type 1 diabetes, has similar amino acid
sequences to Hsp65 and Hsp65 ‘‘should not be com-
pletely discarded as having a possible role in the
development of Type 1 diabetes’’ [43]. In a study
of children newly diagnosed with Type 1 diabetes
47/47 were found to respond to mycobacterial
Hsp65 [44].
Epidemiologic evidence

T1DM and milk

Several studies indicate an association between
early exposure to dietary cow’s milk proteins and
an increased risk of TIDM [45–47]. These studies
have centered around the observation that children
at risk for TIDM who were breast fed exclusively for
more than six months were less likely to have TIDM
later in life than similar risk children who were
weaned onto cow’s milk-based formula at an ear-
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lier age. This observation spawned a large study,
the TRIGR study: Trial to Reduce IDDM in the
Genetically at Risk [48]. Driving the study is the
postulate that there is something about cow’s milk
protein that is an immunologic trigger for TIDM and
that breaking the protein with hydrolysis will elim-
inate the trigger.

The TRIGR study is an ongoing, 17-country study
enlisting 6200 infants who are genetically at risk to
develop TIDM. Children weaned early from breast-
feeding are randomized into two groups; one
receiving traditional cow’s milk-based formula
and the other receiving formula in which the pro-
tein has been hydrolyzed. This is an ongoing study.
MAP has been found in infant formula powder [49].
Discussion

This paper postulates that Mycobacterium avium
ss. paratuberculosis (MAP) acts as an immune anti-
gen in the pathogenesis of T1DM. As the link be-
tween MAP and Crohn’s disease becomes more
compelling, MAP is increasingly recognized for its
ability to act as an occult antigen. Genetic evi-
dence suggests that there are states of macrophage
dysfunction that promote both T1DM and mycobac-
terial infection. These states can be viewed as
templates of macrophage incompetence that indi-
vidually or in combination allow obligate intracel-
lular pathogens such as MAP to persist and serve
as immune antigens. Viable MAP has been found
in commercial milk and infant formula. The epide-
miologic association of TIDM with early exposure to
cow’s milk has prompted the large TRIGR study.
The hypothesis offered here is that Mycobacterium
avium ss. paratuberculosis acts as an immune anti-
gen, a trigger, of TIDM.
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